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We consider the interaction of free-stream disturbances with the leading edge of a
body and its effect on the transition point. We present a method which combines an
asymptotic receptivity approach, and a numerical method which marches through the
Orr–Sommerfeld region. The asymptotic receptivity analysis produces a three-deck
eigensolution which in its far downstream limiting form produces an upstream boun-
dary condition for our numerical parabolized stability equation (PSE). We discuss the
advantages of this method compared to existing numerical and asymptotic analysis
and present results which justify this method for the case of a semi-infinite flat
plate, where asymptotic results exist in the Orr–Sommerfeld region. We also discuss
the limitations of the PSE and comment on the validity of the upstream boundary
conditions. Good agreement is found between the present results and the numerical
results of Haddad & Corke (1998).

1. Introduction
For a body placed in a mean flow, subject to small-amplitude unsteady perturba-

tions, predicting the position of boundary layer transition depends both on the
stability characteristics of the flow and the interaction of the unsteady disturbances
with the boundary layer, a process known as receptivity (Morkovin 1969). Restricting
attention to high-Reynolds-number, two-dimensional flows, the transfer of energy
from the free-stream disturbance to the instability wave generally comes about through
non-parallel mean flow effects, which may arise either close to the leading edge, or
further downstream in localized regions of rapid streamwise variation. Once this
‘seeding’ of instability waves has occurred, the boundary layer disturbance evolves
with distance downstream, typically decaying until the lower-branch neutral stability
point is reached, after which the disturbance grows until amplitudes are sufficiently
high that nonlinear effects lead to transition. A comprehensive review of asymptotic,
numerical and experimental approaches to receptivity and transition is provided by
Saric, Reed & Kerschen (2002).

Analysis of the growth rate of boundary layer disturbances has traditionally been
undertaken based on Orr–Sommerfeld theory. The main problem with this approach
is that it neglects the weak streamwise growth of the boundary layer. Non-parallel
effects can be incorporated, but not rigorously in an asymptotic sense (Gaster 1974;
Saric & Nayfeh 1975).

Bertolotti, Herbert & Spalart (1992) present a method which incorporates non-
parallel effects into a set of differential equations collectively known as the parabolized
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stability equation (PSE). The parabolizing procedure eliminates the most dangerous
upstream propagating eigenmode, and the resulting PSE can be solved by a marching
procedure as long as a large enough step size is chosen (Andersson, Henningson &
Hanifi 1998). The numerical procedure for the PSE requires much less computational
time than direct numerical simulation (DNS) calculations. Compared to non-parallel
Orr–Sommerfeld theory, the main advantage of the PSE is that nonlinear effects
can be included by considering the nonlinear form of the PSE (Bertolotti et al.
1992). In deriving the PSE, the streamwise variation of the mean flow is assumed
to be slow compared to the rapid streamwise change within the boundary layer
near the receptivity region, and so the PSE becomes invalid in regions associated
with boundary-layer receptivity. Since the equations have been parabolized, an
upstream boundary condition, sometimes referred to as an initial condition, is required.
Previous papers which consider the PSE (Bertolotti et al. 1992; Herbert 1993) use
approximations such as parallel Orr–Sommerfeld theory, or a local solution to the
PSE as initial upstream conditions. However, such an approach does not take account
of the amplitude of the unsteady disturbance at this point forced by the free-stream
disturbances.

Receptivity problems differ from classical stability theory in that they lead to a
boundary value problem rather than an eigenvalue problem, which is the result of
stability theory. Receptivity analysis provides the link between free-stream forcing
(be it acoustic or vortical), and the amplitude of the boundary layer disturbance.
Asymptotic analysis of various receptivity regimes is available. Goldstein (1983) con-
sidered the interaction of an acoustic wave with the leading edge of a flat plate, while
Heinrich & Kerschen (1989) obtained corresponding results for a vortical disturbance.
The analysis for acoustic waves was extended to include the effect of rounded leading
edges (Hammerton & Kerschen 1996), and also the effect of mean aerodynamic
loading (Hammerton & Kerschen 2005). Receptivity also arises further downstream
in localized regions of rapid streamwise variation such as the vicinity of surface
roughness (Goldstein 1985; Bodonyi et al. 1989; Kerschen, Choudhari & Heinrich
1990), marginal separation (Goldstein et al. 1992) or changes in surface curvature
(Goldstein & Hultgren 1987). Asymptotic analysis of these localized receptivity regions
is also supplemented by a numerical ‘finite-Reynolds-number approach’ (Choudhari &
Streett 1992; Crouch 1992). In each case the disturbance downstream of the receptivity
region is obtained in the form of an eigensolution, independent of the nature
of the free-stream forcing, together with a ‘receptivity coefficient’ multiplying the
eigensolution. Hence comparison of the receptivity coefficients for a specific body
geometry, but for different free-stream disturbances, provides a direct comparison
of the relative receptivity. In addition, the receptivity coefficient is independent of
Reynolds number (in the large-Reynolds-number limit) and these two properties
make this definition of the receptivity coefficient particularly attractive. However,
numerical investigations and experimental results typically focus on the amplitude of
the unstable disturbance at the lower-branch neutral stability point.

Numerical investigations of leading-edge receptivity can be divided into two main
categories. Reed (1994) summarizes DNS methods, while Fuciarelli, Reed & Lyttle
(1998) discuss such results for a flat plate with an elliptical leading edge. An alternative
approach taken by Corke and co-workers is based on linearization about the base
flow, that leads to decoupling of the base and unsteady flows which can then be
solved separately. Haddad & Corke (1998) considered parabolic bodies with axis of
symmetry parallel to the mean flow, Erturk & Corke (2001) and Haddad, Erturk &
Corke (2005) extended the analysis to parabolic bodies at an angle of attack to the



Asymptotic receptivity analysis and the parabolized stability equation 357

U∞

y

x

Neutral stability point

Stokes layer–viscous wall layer

Locally parallel

Orr–Sommerfeld region

Overlap region

region
boundary layer

Unsteady

Main
inviscid

region
η = O(1)

η = O(ε–1)

Edge of boundary layer

Outer
inviscid

region

xR = O(1)

xR = O(ε–2)

xR = O(ε)

Figure 1. The asymptotic structure of the unsteady boundary layer on a flat plate, showing
the leading-edge region, where receptivity predicts the form of the unsteady solution far
downstream, which matches onto the solution of the Orr–Sommerfeld region.

mean flow, while Wanderley & Corke (2001) considered bodies with elliptical leading
edges in order to compare with the results of Fuciarelli et al. (1998).

Experimental results on leading-edge receptivity are summarized by Saric &
Rasmussen (1992), Saric, Reed & Kerschen (1994) and Saric, Wei & Rasmussen
(1995). Saric & White (1998) considered receptivity on a modified super ellipse
(MSE) due to free-stream sound. A modified super ellipse has the leading edge
directly machined onto a flat plate, which moves the pressure minimum closer to
the leading edge, and removes the curvature discontinuity associated with an ellipse
stuck onto a flat plate, which contributes additional receptivity. The results of Saric &
White (1998) are compared to numerical results in Wanderley & Corke (2001).

The aim of the present paper is to show how results from receptivity theory can be
combined with stability calculations in order to allow comparison with experimental
measurements and numerical simulation. Here attention is restricted to leading-edge
receptivity on a flat plate, though the methods can be readily extended to more
general cases.

The asymptotic structure for a small-amplitude unsteady disturbance interacting
with a flat plate is discussed in detail by Goldstein (1983), and the boundary layer
structure is illustrated in figure 1. Here the mean flow has speed U∞ and the
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small-amplitude unsteady disturbance has frequency ω∗. Close to the leading edge,
where xR = ω∗x∗/U∞ = O(1), the flow is governed by the unsteady boundary-
layer equation. Receptivity analysis predicts the form of the unsteady disturbance
far downstream in this region, and through the receptivity coefficient, the
dependence of this amplitude on the free-stream forcing. When xR = O(ε−2), where
ε = (νω∗/U 2

∞)1/6 � 1, the linearized unsteady boundary layer equation (LUBLE)
solution breaks down but can be asymptotically matched, in some intermediate
region, to solutions of the classical large-Reynolds-number, small-wavenumber
approximation to the Orr–Sommerfeld equation. For the flat-plate case, asymptotic
solutions in the Orr–Sommerfeld region are available, though the analysis to
the required order is particularly difficult (Goldstein 1982). Thus matching of
the receptivity analysis to the asymptotic Orr–Sommerfeld solutions provides the
disturbance amplitude at the lower-branch neutral stability point. However, due to
the difficulty in extending this method to more general bodies, we consider using
receptivity solutions as initial conditions for numerical solutions further downstream
using the PSE formulation discussed earlier.

We derive the PSE for the case of a semi-infinite flat plate in § 2, and review the
key results of the asymptotic analysis of Goldstein (1983) for a flat plate in § 3. In
§ 4 we discuss the different types of initial condition for the PSE. In order to use
receptivity results as an initial condition for PSE calculations, the existing receptivity
analysis is extended to provide the solution for the mode shape in the outer inviscid
region. Results presented in § 5 show that a matching region does exist between the
leading-edge and Orr–Sommerfeld regions, and we discuss how this can be utilized
in order to use the receptivity analysis as the initial condition to the PSE. This then
provides the required link between free-stream forcing in the receptivity region and
the boundary layer disturbance amplitude far downstream. For small values of ε, this
method proved robust in the sense that starting PSE calculations over a range of
locations provided consistent results far downstream. For moderately small values of
ε, typical of experimental studies, some problems in matching the different solutions
close to the leading edge do arise. In § 6 we look at ways to overcome some of these
difficulties, and show how we can use the PSE method to calculate amplitudes of
Tollmien–Schlichting (T-S) waves at downstream positions. We compare our results
to the numerical computations of Haddad & Corke (1998), in the limiting case of
a parabola with zero nose radius. Finally we compare our results to those obtained
by Wanderley & Corke (2001) in their attempt to extrapolate numerical results,
close to the neutral stability point, back to the receptivity region at the leading
edge.

2. Formulation of the parabolized stability equation
Here we briefly summarize the derivation of the PSE for the case of two-dimensional

disturbances in the Blasius boundary layer. The PSE is not just restricted to two-
dimensional problems, and the three-dimensional version can be found in Herbert
(1993)

The Cartesian coordinate system (x∗, y∗) is used, where x∗ is the dimensional
streamwise direction and y∗ is normal to the plate. The Navier–Stokes equations are
written in terms of the stream function Ψ to satisfy continuity identically,(

∂

∂t
− 1

R0

∇2 +
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∇2Ψ = 0, (2.1)
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where

R0 =
U∞δ0

ν
, (2.2)

and all quantities are non-dimensionalized using the velocity U∞ and the fixed length
δ0 = (νx∗

0/U∞)1/2. Here ν is the kinematic viscosity and x∗
0 is the dimensional distance

from the leading edge at which the analysis is started. The corresponding non-
dimensional distance is given by x0 = R0. R0 is the Reynolds number based on δ0, and
is assumed to be large, so that the flow field is inviscid and irrotational everywhere
except in the vicinity of the flat plate’s surface.

The stream function is split into a disturbance part ψ(x, y, t) and a steady base
flow ΨB(x, y) = f (η)(x/R0)

1/2 + O(R−2
0 ), where f is the Blasius function, and satisfies

f ′′′ + ff ′′ = 0, f (0) = f ′(0) = 0 f ′ −→ 1 as η −→ ∞, (2.3)

with η = R
1/2
0 y/(2x)1/2.

The equation for ψ is obtained by substituting the combined flow into (2.1) and
subtracting the equation satisfied by the mean flow (Bertolotti et al. 1992). Then a
solution for ψ is sought in the form of a spatially evolving two-dimensional wave
of constant frequency ω, with a local streamwise wavenumber α(x), and a complex
mode shape φ(x, y), of the form

ψ(x, y, t) = φ(x, y) exp(i(θ(x) − ωt)) + complex conjugate, (2.4)

where
dθ

dx
= α(x).

The disturbance amplitude is assumed to be sufficiently small, |ψ | � 1, so that the
non-linear terms in ψ can be neglected. Nonlinear terms are neglected, not just for
simplicity, but also because we are only interested in running calculations up to, and
slightly beyond the lower-branch neutral stability point. The nonlinear effects usually
only become significant as the wave amplitude grows, which happens downstream of
this point. Bertolotti et al. (1992) also discussed a nonlinear version of the PSE, which
can be used to incorporate nonlinear effects, which would help to take calculations
up to upper branch.

The key assumption in the PSE formulation is that the variation of α and φ is
sufficiently small that ∂2α/∂x2 and ∂2φ/∂x2 and products of first derivatives ∂α/∂x,
∂φ/∂x are negligible. This assumption has been observed to hold for T-S waves both
in experiments and in numerical computations (Morkovin 1985). In addition, the
neglect of these terms can be argued by noting that for a flat plate the streamwise
variation of the mean flow ΨB varies on a length scale of O(R−1

0 ), suggesting that the
streamwise variation of φ and α is at most O(R−1

0 ) and that the magnitude of φxx ,
αxx and φxαx can be at most O(R−2

0 ). Thus these terms can be neglected if we neglect
all terms of O(R−2

0 ) in our governing equation.
These assumptions lead to the derivation of the linear form of the PSE, which

written in operator form is

(L0 + L1)φ + M
∂φ

∂x
+

dα

dx
Nφ = 0, (2.5)

where

L0 = − 1

R0

(D2 − α2)2 +

(
iα

∂ΨB

∂y
− iω

)
(D2 − α2) − iα

∂3ΨB

∂y3
, (2.6)



360 M. R. Turner and P. W. Hammerton

L1 =
∂3ΨB

∂x∂y2
D − ∂ΨB

∂x
(D2 − α2)D, (2.7)

M =
∂ΨB

∂y
(D2 − 3α2) + 2αω − ∂3ΨB

∂y3
, (2.8)

N = ω − 3α
∂ΨB

∂y
, (2.9)

and D ≡ d/dy.
Equation (2.5) is very similar to the one derived by Bertolotti et al. (1992), except we

have neglected the O(R−1
0 ) terms from operators M and N, as these only contribute

to the solution at O(R−2
0 ), so in our opinion the approximation is more consistent, in

the sense that we have neglected all the O(R−2
0 ) terms rather than neglecting most of

them but retaining two terms, as in Bertolotti et al. (1992). This approach has been
adopted by Andersson et al. (1998), and our findings have shown that these O(R−2

0 )
terms have no significant effect on the solution to the problem.

A second equation is required to resolve the ambiguity of the partition (2.4) into
two functions of x. A normalization condition is imposed on φ which restricts rapid
variation in the x-direction. To achieve this, the normalization condition is defined
as ∫ ∞

0

φxφ
† dy = 0, (2.10)

where † denotes the complex conjugate. This condition minimizes the streamwise
change ∂φ/∂x in a weighted sense across the y-domain, and hence puts the majority
of the streamwise variation with x into the wavenumber α. There are many other
possible normalization conditions, all of which would lead to the same total growth
rate used in § 5; however we chose (2.10) as this was the choice used by other authors
(Herbert 1993 and Andersson et al. 1998), and was relatively easy to implement
numerically.

The approach taken in the present implementation of the PSE scheme, in contrast
to previous work, is that η, as defined following (2.3), is used as the wall-normal
coordinate rather that y. Hence the boundary layer growth downstream is naturally
accounted for in the numerical mesh. The semi-infinite domain η ∈ [0, ∞) is mapped
to the domain η̄ ∈ [−1, 1] by

η̄ =
η − L

η + L
, (2.11)

where L denotes a constant map parameter, chosen to match the width of the function
to be expanded. In this problem, the main variation of the shape function occurs for
η < 20, hence choosing L = 20 is reasonable, and we found these results agree with
those of the case L = 45, so there is some flexibility in this value.

The numerical procedure consists of expanding the shape function, φ, as a sum of
Chebyshev polynomials. The system is then solved at each streamwise position for the
coefficients multiplying each polynomial, with iterations on φ and the wavenumber,
α, until the normalization condition (2.10) is satisfied. This numerical method is then
equivalent to the one used by Bertolotti et al. (1992), and more details are contained
in that paper.

For the purposes of this paper, we are only interested in the propagation of the
eigensolutions from the leading-edge region, hence we solve (2.5) with homogeneous
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boundary conditions, and as an upstream boundary condition, we stipulate

φ(x0, y) = F̂ (y), α(x0) = α0, (2.12)

where x0 is the dimensionless starting position on the plate. These conditions are
determined by the mean boundary layer at x0 and by the interaction of the unsteady
free-stream disturbance with the boundary layer upstream of x0.

3. Asymptotic analysis for a flat plate
3.1. Leading-edge receptivity analysis

Close to the leading edge of the flat plate, the PSE is not valid, because there is rapid
growth of the boundary layer, and the assumption that αxx , φxx and αxφx are small
is no longer valid. This region occurs when xR = O(1), where xR is equivalent to the
streamwise variable x used by Goldstein (1983). Hence we have a different balance of
terms at leading order. The solution in this receptivity region is determined in the
form of a three-deck solution as shown in figure 1. The Stokes layer close to the
wall is the deck in which viscous terms are most important, and the solution in this
deck satisfies the no-slip condition at the plate’s surface. The outer inviscid region
lies outside the boundary layer, and in this deck the disturbance amplitude tends to
zero as η −→ ∞. Between these two decks there is the main inviscid region, and the
solution in this deck must match onto the other two decks.

The governing equation in this region for a flat plate in a uniform flow of speed
U∞ plus a small-amplitude harmonic perturbation of dimensional frequency ω∗ takes
the form

− i∇̃2ψ + x1/2
R

[
∂
(
x−1

R
∇̃2ψ, x1/2

R
f

)
∂(x

R
, η)

+
∂
(
x−1/2

R
f ′′, ψ

)
∂(x

R
, η)

]
= ∇̃2

(
1

2x
R

∇̃2ψ

)
, (3.1)

where

∇̃2 =
∂2

∂η2
+ 2ε6x

R

∂2

∂x2
R

+ ε6 ∂

∂x
R

, ε = Re−1/6 = F 1/6 =

(
U 2

∞
νω∗

)−1/6

, (3.2)

with conditions on the wall ψ(0) = ψη(0) = 0 and ψ matching to the inviscid solution
for large η. In (3.1), correction terms, which remain uniformly small in all the regimes
we considered, have been dropped. Re is defined as the Reynolds number based on
the acoustic length scale U∞/ω∗, and F = ω∗ν/U∞ is the dimensionless frequency,
commonly used in stability calculations.

We seek a solution of (3.1), in the limit ε −→ 0 with x
R
= O(1), of the form

ψ = ψ0(xR
, η) + O(ε6) where ψ0 satisfies(

− i + f ′ ∂

∂x
R

)
ψ0η − f ′′ψ0x

R
− 1

2x
R

(f ψ0η)η − 1

2x
R

ψ0ηηη = h(x
R
), (3.3)

and h(x
R
) is determined by the unsteady forcing of the boundary layer by the free-

stream disturbance. This equation is known as the linearized unsteady boundary layer
equation (LUBLE).

Far downstream in this region, the solution for ψ0 consists of a combination of
a Stokes solution, and a sum of eigensolutions satisfying homogeneous boundary
conditions (Lam & Rott 1960, 1993; Brown & Stewartson 1973). The two sets
of eigensolutions differ fundamentally and their precise relationship is unclear
(Hammerton 1999). The importance of the Lam–Rott eigensolutions in receptivity
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analysis is that they exhibit wavelength shortening and hence provide the link between
long-wavelength free-stream disturbances and much shorter scale instability waves in
the boundary layer. The nth Lam–Rott asymptotic eigensolution takes the form,

ψ
(n)
0 = Cnx

τn

R
g0(xR

, η) exp

(
−e−7π i/4(2x

R
)3/2

3U ′
0ζ

3/2
n

)
as x

R
−→ ∞, (3.4)

where Cn is an arbitrary constant, U ′
0 = f ′′(0) = 0.4696, τn is expressed in terms of

integrals of Airy functions involving ζn (Hammerton & Kerschen 1996), and ζn is the
nth root of Ai′(ζn) = 0 (where Ai′ denotes the derivative of the Airy function). For the
transition problem considered here, the first eigensolution is of particular interest, in
which case τ1 = −0.6921 and ζ1 = −1.0188.

Note that the wavelength of (3.4) is proportional to x
−1/2
R ; hence when xR becomes

large, (3.3) is no longer valid as the leading-order balance of (3.1) due to terms
in ∂/∂xR becoming large. This is found to occur when xR = O(ε−2), so we have to
consider a different balance of terms in this region.

3.2. Asymptotic Orr–Sommerfeld analysis

The region where xR =O(ε−2) is known as the Orr–Sommerfeld region, and we define
a scaled, O(1), variable in this region by x̃1 = 2ε2x

R
/U ′2

0 .
We seek a solution to the governing equation in this region in the form

ψ0 = γ (x̃1, η)A(x̃1) exp

(
iU ′2

0

2ε3

∫ x̃1

0

κ dx̃1

)
,

where A(x̃1) is a slowly varying function of x̃1 and γ is the mode shape. We define
the growth rate of the disturbance by the real part of

1

ψ0

∂ψ0

∂x̃1

=
γx̃1

γ
+

Ax̃1

A
+

iU ′2
0

2ε3
κ. (3.5)

In the Orr–Sommerfeld region the wavenumber can be expanded in the form

κ(x̃1) = κ0(x̃1) + εκ1(x̃1) + ε2κ2(x̃1) + ε3(ln ε)κ3(x̃1) + O(ε3), (3.6)

where the terms κ0, κ1, κ2, and κ3 are given in Goldstein (1983). Here we give
expressions only for the first two terms. Defining

ζ00 = e−5 iπ/6

(
x̃

1/2
1

κ0

)2/3

, H (ζ00) =
e5iπ/2ζ 2

0 Ai′(ζ00)∫ ζ00

∞1

Ai(ζ )dζ

,

κ0 and κ1 are determined by

H (ζ00) = x̃
3/2
1 ,

κ1

κ0

= −3

2
eiπ/4ζ

1/2
00 x̃1

(
2 − x̃

3/2
1 J1

iζ 3
00

)/
H ′(ζ00).

The equation for ζ00 gives a set of solutions and it can be shown that as x̃1 −→ 0,
the solution corresponding to the nth root matches back to the nth Lam–Rott
eigensolution (3.4). The growth rate obtained using the first root of ζ00 becomes
positive further downstream and it is for this reason that the first Lam–Rott
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eigensolution is of interest. The numerical coefficient C1, which is determined by
the receptivity analysis, then gives the amplitude scaling of the mode, which becomes
unstable and hence is termed the receptivity coefficient.

From (3.5) it is seen that the O(ε3) term in κ enters the analysis at the same order
as A(x̃1) in determining the algebraic correction to the growth rate of the disturbance.
The analysis at this order is very complicated and was not presented in Goldstein
(1983), though results were obtained in an earlier paper (Goldstein 1982).

When analysing the full transition problem, combining receptivity and stability
processes, inclusion of algebraic growth terms is clearly important, especially if the
parameter ε is only moderately small. The complexity of the analysis at this order,
even for a flat plate, makes prediction of disturbance amplitudes at the lower branch
difficult. For finite-thickness bodies, with a rounded leading edge tending to a flat plate
far downstream, we find that the geometry enters the problem for κ via the large-xR

expansion for the base flow at O(ln(xR)/xR), and via the term A(x̃1) at O(1). Hence
for moderate values of ε, and small xR , the accurate evaluation of the A(x̃1) term
becomes important. We find however that at this order such analysis is impractical.
For this reason we choose to consider numerical solutions in the Orr–Sommerfeld
region using PSE methods.

4. Upstream boundary conditions for the PSE
To march the PSE solution downstream, we need to stipulate an upstream boundary

condition (2.12). This section compares three possible choices.

4.1. Local solution to the PSE

Possibly the easiest and most convenient upstream boundary condition to the PSE is
to assume that at the starting point the boundary layer is parallel, hence streamwise
derivatives of φ, α and ΨB are all zero, and the problem reduces to the Orr–Sommerfeld
problem

L0φ =

(
− 1

R0

(D2 − α2)2 +

(
iα

∂ΨB

∂y
− iω

)
(D2 − α2) − iα

∂3ΨB

∂y3

)
φ = 0. (4.1)

The initial conditions come from solving this eigenvalue problem for the most unstable
eigenvalue α and corresponding eigenfunction φ at the starting value of x.

To use the Orr–Sommerfeld approximation above, we have to be far enough from
the leading edge of the body so that the growth of the boundary layer is very small.
However, in order to consider the effect of leading-edge receptivity on transition, we
would like to start our PSE calculations from closer to the leading edge, where there
is a small, but significant, change in boundary layer thickness.

An improved method, taking some account of non-parallel effects, is described by
Bertolotti et al. (1992) where the solution to (2.5) is found locally about some value
x0. We expand the local solution as a Taylor series in powers of ξ = x − x0 and note
that the second derivatives of φ and α with respect to x can be neglected because of
our assumption that these are at most O(R−2

0 ).
The Taylor series gives φ(x, y) =φ0+ξφ1 and α(x) = α0+ξα1, which on introduction

into (2.5) and requiring that the equation be valid for varying ξ produces two
equations,

(L0 + L1 + α1 N)φ0 + Mφ1 = 0, (4.2)

(L3 + iα1 M)φ0 + L0φ1 = 0, (4.3)
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where

L3 = iα0

∂2ΨB

∂x∂y

(
D2 − α2

0

)
− iα0

∂4ΨB

∂x∂y3
,

and in L0, L1, M and N, defined in (2.6)–(2.9), α is replaced by α0.
To solve this problem, we consider the approximation α = constant, i.e. α1 = 0,

which is effectively a different normalization condition to (2.10). This approach leads
to us solving a simple linear system problem, using methods devised by Bridges &
Morris (1984).

The eigenvalue problem becomes[
L0 + L1 M

L3 L0

] [
φ0

φ1

]
=

[
0
0

]
, (4.4)

which at x = x0 gives us the upstream boundary condition α = α0 and φ = φ0.
Bertolotti et al. (1992) shows that (4.4) produces a pair of eigenvalues which approach
the eigenvalue of the Orr–Sommerfeld problem as R0 −→ ∞. Because of this, which
eigenvalue we take as our initial condition becomes ambiguous, which we shall address
in the results section, § 5. Bertolotti et al. (1992) suggest other iterative methods to
solve (4.2) and (4.3), but their analysis shows that there is no advantage in using these
methods compared to the one above.

With both the Orr–Sommerfeld and local PSE conditions, we lack information
about the initial amplitude of the eigensolution. This leaves the final amplitude, after
the PSE calculation, as a multiple of the initial amplitude, which is unknown. The
reason for this is that the problem in the Orr–Sommerfeld region is an eigenvalue
problem, and hence contains no information from the leading edge, or from the
free-stream disturbance.

4.2. Leading-edge asymptotics

Leading-edge receptivity analysis supplies us with an initial amplitude for the
eigensolution, since far downstream we know the complete solution, given by (3.4),
up to the arbitrary constant Cn, which in turn can be determined by the methods
described in Goldstein, Sockol & Sanz (1983).

However, we cannot use the form of g0 given in (3.4), because it is only valid up
to η = O(1), whereas the PSE requires a boundary condition defined for η ∈ [0, ∞).
Thus the LUBLE solution in the outer inviscid region, with g0 −→ 0 as η −→ ∞ is
required. This outer inviscid solution is not given in Goldstein (1983) and is derived
here.

To analyse the outer inviscid solution, we consider the following scaled variables:

x
R

= ε−lX, η = ε−m, l, m > 0. (4.5)

As the outer inviscid solution occurs in the region η −→ ∞, we can approximate the
Blasius function by

f (η) ∼ η − c̃1 + exponentially small terms,

where c̃1 = 1.21678. In terms of the new variables, the operator ∇̃2 appearing in (3.2)
becomes

∇̃2 = ε2m ∂2

∂N2
+ 2ε6+lX

∂2

∂X2
+ ε6+l ∂

∂X
. (4.6)



Asymptotic receptivity analysis and the parabolized stability equation 365

Motivated by the form of the solution in the main layer (3.4), we assume ψ is of
the form

ψ = P (X, N ) exp

(
−

(
23/2λ

3U ′
0

)
ε−3l/2X3/2

)
,

where P (X, N ) is a function to be found and λ=e−7πi/4/ζ 3/2
n . Substituting into (3.1)

and using (4.5) and (4.6), we find that

l + m = 3,

in order to give a non-trivial leading-order balance of terms.
To provide a suitable initial condition for a PSE solution, the LUBLE solution is

required in the overlap region, corresponding to xR = O(ε−2), which with l = 2, and
m = 1, in our analysis leads to

PNN +
9

2

(
23/2λ

3U ′
0

)2

X2P + O(ε3) = 0. (4.7)

The solution of (4.7) which is bounded as X −→ ∞ is

P = (B0(X) + εB1(X)) exp

(
−2λiXN

U ′
0

)
+ O(ε2),

and matching to the main inviscid region gives

P (x, η) = x
τn

R

(
U ′

0i

λ
+ (2x

R
)1/2

)
exp

(
−ε3λi(2x

R
)η

U ′
0

)
+ O(ε2). (4.8)

It can also be shown that the solution is valid closer to the leading edge where
xR =O(ε−1). However it is not valid at the leading edge, because here the motion is
governed by the full Navier–Stokes equations.

Using g0 and (4.8), we can represent the mode shape in the leading-edge region in
the form of a composite function, for which we take

composite
solution

=

(
inner-deck
solution

+
main-deck
solution

− overlap
solution

)
× outer-deck

exponential,
(4.9)

so

g0(xR, η) = (xR)τn

⎛
⎜⎜⎝(2xR)1/2f ′(η) + U ′

0

∫ σ

0

(σ − σ̃ )ω(σ̃ ) dσ̃∫ ∞

0

ω(σ̃ ) dσ̃

− U ′
0(2xR)1/2η

⎞
⎟⎟⎠

× exp

(
−ε3iλ(2xR)η

U ′
0

)
. (4.10)

We now use this expression as the initial condition for the PSE calculations. The
receptivity and PSE variables are related by

xR =
R0

Re
x,

and hence if the starting point for the PSE calculation is taken to be x̃1 = x̃
(0)
1 , we

have

x0 = R0 = ε−4U ′
0

(
x̃

(0)
1

2

)1/2

, ω =
R0

Re
.
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From (3.4) and (4.10) the initial wavenumber is then given by

α(x0) = iλε6R0

(
x̃

(0)
1

)1/2
, (4.11)

and the initial shape function for the PSE calculation is given by

φ(x0, η) = C1g
(
x(0)

R
, η

)
, x(0)

R
=

ε−2U ′2
0 x̃

(0)
1

2
. (4.12)

Thus to stipulate an initial condition we only require the value of ε and a choice of
value for x̃

(0)
1 .

5. Results
In this section, we present results which illustrates the matching region on a flat

plate, and we give streamwise bounds for this region. We also demonstrate that using
the results of receptivity analysis as the initial condition for the PSE is consistent
with other initial conditions.

To make the comparison of the results easier, we split the amplitude function
φ(x, η), defined in (2.4), in the following way:

φ(x, η) = φmax(x)φ̄(x, η), (5.1)

where the maximum value of φ̄ is 1. The stream function is then given by

ψ = φ̄(x, η) exp(iθ̃ (x) − ωt) + complex conjugate, (5.2)

with

dθ̃

dx
= G(x),

where G(x) now contains all the wave amplitude information and is of the form

G(x) =
Re

R0

(
iα +

1

φmax

∂φmax

∂x

)
. (5.3)

Although G(x) is defined as a function of the PSE streamwise variable, we plot it as
a function of x̃1, for easy comparison with Goldstein’s results.

In figures 2 to 5, we compare initial mode shapes at two x̃
(0)
1 values and for two

values of ε. These show the existence of a matching region, in the limit ε −→ 0, where
the solutions from the Orr–Sommerfeld regime and the leading-edge regime match
onto one another.

Figures 2 and 3 show a comparison between the initial mode shapes of the three
upstream boundary conditions at two different starting positions, x̃(0)

1 = 0.3 and x̃
(0)
1 = 1

when ε =F 1/6 = 0.1. For this value of ε, x̃
(0)
1 = 1 corresponds to the downstream

Reynolds number Rx = U∞x∗/ν = 1.1 × 107. The real parts, figure 2, and imaginary
parts, figure 3, compare very well close to the wall for both starting points, but as
we move away from the wall, they all decay to zero at slightly different rates, and
at x̃

(0)
1 = 1 the parallel Orr–Sommerfeld and local PSE mode shapes vary more from

the receptivity mode shape than they do at x̃
(0)
1 = 0.3. This suggests that x̃

(0)
1 = 0.3

lies closer to the overlap region than x̃
(0)
1 = 1. Considering smaller values of x̃

(0)
1 for

this value of ε does not improve the agreement between the three mode shapes
since the parallel Orr–Sommerfeld equation and the local PSE become invalid
as x̃

(0)
1 −→ 0 due to non-parallel effects entering at leading order. Also as we let

x̃
(0)
1 −→ 0, we encounter problems identifying the most unstable eigenvalue for both
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Figure 2. Comparison of the real part of the initial mode shapes of the three regimes for

ε = 0.1 at streamwise locations (a) x̃
(0)
1 = 0.3, and (b) x̃

(0)
1 = 1.0.
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Figure 3. Comparison of the imaginary part of the initial mode shapes for the three regimes

for ε = 0.1 at streamwise locations (a) x̃
(0)
1 = 0.3, and (b) x̃

(0)
1 = 1.0.

the parallel Orr–Sommerfeld and local PSE calculations. It is found that the
unstable eigenvalue becomes indistinguishable from the discrete approximation to
the continuous spectrum of eigenvalues in each case.

In order to illustrate the existence of a matching region more clearly, we consider
corresponding results for a smaller value of ε. With ε = 0.05, we can solve the parallel
Orr–Sommerfeld and local PSE equations closer to x̃

(0)
1 = 0, and figures 4 and 5 com-

pare the real and imaginary parts of the mode shapes respectively at x̃
(0)
1 = 0.1 and

x̃
(0)
1 = 0.2. For this smaller value of ε, figure 4(a) shows that the real part of the three

solutions at x̃
(0)
1 = 0.1 overlap each other while figure 5(a) shows that for the imaginary

part, the local PSE is in fact in slightly better agreement with the receptivity solution
than the parallel Orr–Sommerfeld solution. From these figures it is clear that x̃

(0)
1 = 0.1

lies within an overlap region between the leading-edge region and the Orr–Sommerfeld
region.

Figure 6 shows a comparison of the real part of the growth rate, G, calculated
using the different methods described in the previous sections for two different
values of ε. The solid line shows the results for Goldstein’s asymptotic results in the
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Figure 4. Comparison of the real part of the initial mode shapes for ε = 0.05 for the
leading-edge receptivity, parallel Orr–Sommerfeld and local PSE analysis, where the line

styles correspond to those in figures 2 and 3. In (a) x̃
(0)
1 = 0.1, the three mode shapes lie over

each other, and in (b) x̃
(0)
1 = 0.2, only the leading-edge mode shape is distinguishable from the

other two.
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Figure 5. As figure 4 but for the imaginary part. In (a) x̃
(0)
1 = 0.1, the solutions are the same

for small η, and in (b) x̃
(0)
1 = 0.2, the leading edge mode shape is more distinguishable.

Orr–Sommerfeld region given by (3.5), up to and including the O(ε3) term. This can
be compared with results from parallel Orr–Sommerfeld theory, (4.1), and from local
PSE, (4.4), which takes some account of non-parallel effects. For ε = 0.05 (figure 6a)
results from asymptotic analysis and local PSE are indistinguishable, while the parallel
flow results start to differ as the leading edge is approached, which is to be expected
as non-parallel effects begin to dominate. As ε is increased to ε = 0.1 (figure 6b), the
difference between the different solutions in the Orr–Sommerfeld region are larger.
In addition, the local PSE solution can only be calculated for x̃1 � 0.25 due to the
first eigenvalue of (4.4) becoming indistinguishable from the other eigenvalues, as
described earlier.

The existence of a matching region between the receptivity region close to the
leading edge and the Orr–Sommerfeld region further downstream can also be
seen in figure 6. The dashed line marks the asymptotic growth rate of the first
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Figure 7. The real part of the growth rate, G, given by the PSE, started at different
positions for (a) ε = 0.05 and (b) ε = 0.1.

Lam–Rott mode given by (3.4). For the case ε = 0.05 (figure 6a), the receptivity
results overlap the results from the asymptotic Orr–Sommerfeld and local PSE in the
range 0.05 < x̃1 < 0.1 and so a matching region clearly exists. For the larger value
of ε (figure 6b), a reasonable match between the receptivity and asymptotic Orr–
Sommerfeld results is seen at x̃1 ≈ 0.1, but there is not such a clear matching region
between the receptivity results and local PSE results due to the problem of obtaining
PSE results close enough to the leading edge.

Now that we have established the existence of the matching region, at least for
sufficiently small ε, we can try to utilize this result by starting our PSE analysis
from inside or close to this region using (4.11) and (4.12) as the initial conditions.
Figure 7 shows the real part of the growth rate, G, defined in (5.3), calculated using
the PSE at different starting points, with the initial condition given by the receptivity



370 M. R. Turner and P. W. Hammerton

analysis. Two starting positions were chosen, one lying within the matching region
discussed above, and one further downstream where the LUBLE has become invalid.
The results in figure 7 illustrate the smallest possible value of x̃

(0)
1 at which the PSE

could be started for the two values of ε considered, together with a sample calculation
starting the PSE marching solution further downstream. When we attempted to use
an initial condition further upstream of these smallest values, we found that the PSE
would not iterate to the correct solution. The reason for this is discussed later in this
section. We note that the minimum value of x̃

(0)
1 at which PSE marching solutions

can be initiated increases as ε increases. The use of the initial condition further
downstream highlights the fact that the PSE will iterate to the correct solution, even
if an incorrect initial condition is imposed, as long as the point chosen is not too far
downstream.

As well as the restriction that PSE calculations cannot be started close to the leading
edge, there are other limitations in using the receptivity result as the initial condition.
For example if we start with a receptivity boundary condition too far downstream,
the PSE does not iterate to the correct solution, because the first initial jump in the
eigenvalue is too large. However when a PSE run was started further downstream,
with an initial eigenvalue taken from a previous calculation at that point, we found
that the solution did indeed match onto the previous runs. This appears to suggest
that the numerical scheme involved in the PSE needs a good initial approximation
for the eigenvalue, but is less rigid when it comes to the initial mode shape; however
this requires further investigation.

The use of the receptivity initial condition was also compared with PSE results using
initial conditions from parallel Orr–Sommerfeld and local PSE analysis. For the case
ε = 0.1, with x̃

(0)
1 = 0.5, the initial eigenvalues, α, for the receptivity, Orr–Sommerfeld

and local PSE analysis are given by 0.011416 + 0.011416i, 0.012746 + 0.005918i and
0.014008 + 0.006338i respectively, where α has been taken to be the most unstable
eigenvalue in the last two cases. For this problem we chose a step size of �x̃1 = 0.05,
and we found that the result of the PSE calculations with these initial conditions
gave the same solution after the first 2 or 3 streamwise steps, which shows that our
choice of a receptivity boundary condition is consistent with those previously used.
In a similar fashion, it can be shown that using either of the pair of eigenvalues and
corresponding mode shape from the local PSE analysis discussed in § 4.1 leads to the
same result downstream after 2 or 3 steps. Hence the ambiguity discussed in § 4.1 is
removed, and using either of the pair of initial eigenvalues is acceptable.

Another problem that arises if we try to start the PSE close to the leading edge
is the appearance of transients due to the initial conditions. This is illustrated in
figure 8 for the case ε = 0.175 (F = 28.7 × 10−6), taking as the initial condition of the
PSE code the receptivity result at x̃1 = 0.5. With a step size of �x̃1 = 0.15 in the x̃1

variable, oscillations of relative magnitude 15% appear in the range 0.5 < x̃1 < 2
(6.3×104 < Rx < 25.0×104), but these decay further downstream. Increasing the step
size eliminates these oscillations. The presence of such transients has been noted by
Bertolotti et al. (1992) and Herbert (1993), but there has been no systematic study of
initial transients in PSE calculations. Understanding the origin of these transients is
clearly important, though a detailed study is beyond the scope of the present paper.
However some general observations can be made about the appearence of such
transients. In figure 9 we see a more detailed plot of the transients on the real part of
G for the case ε = 0.15. We note that for the two largest step sizes, �x̃1 = 0.2 and 0.1,
there are no oscillations, and the difference between these solutions is small. As we
decrease the step size to �x̃1 = 0.06, we see these transients beginning to appear and
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Figure 9. The initial transients on Re(G) for ε = 0.15 for four different step sizes,
�x̃1 = 0.05, 0.06, 0.1, 0.2, showing the occurrence of these transients as the step size reduces.

as we decrease the step size further, the amplitude of these oscillations increases, while
the wavelength remains approximately constant, λx̃1

≈ 0.39. One possible explanation
for the appearance of these transients is that since the initial condition taken is
only a numerical approximation to the first eigenmode, then the initial waveform is
likely to contain a small contribution from higher eigenmodes. Initially these higher
modes decay more slowly than the first eigenmode and hence these contributions
may become significant. This is discussed in more detail in § 6, but for the value of ε

used in figure 9, it can be shown using Goldstein’s asymptotics that the corresponding
wavelength of the amplitude of the first eigenmode plus a small correction given by the
second eigenmode is λx̃1

≈ 0.36. While this is not conclusive evidence of the origin of
transients in PSE solutions, it is worthy of further investigation elsewhere. We believe
it is a combination of these transients, which are related to the streamwise step
size, as well as the difficulty in finding the eigenvalue, which leads to the failure of
PSE convergence when starting the calculation too close to the leading edge. The
magnitude of the initial transient oscillations become increasingly large for smaller ε
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or smaller x̃
(0)
1 , and in most cases become so large so quickly that the PSE code fails

to converge.
The results presented above have focused on the initial (upstream) conditions

suitable for PSE marching solutions. In particular it has been shown that conditions
given by receptivity analysis in the region of the leading edge can be used as initial
conditions. Combining receptivity analysis with stability calculations using numerical
solutions of the PSE allows the determination of disturbance amplitudes at the lower
branch as a function of free-stream disturbance. We define the disturbance amplitude
to be the absolute value of ψ at the point where the real part of ψ attains its
maximum value, i.e. where Re(φ̄) = 1. We must take great care when evaluating the
disturbance amplitude downstream, because of the

exp

(∫ x

G(x) dx

)
,

term in (5.2), which when we change variables to x̃1 becomes

exp

(
U ′2

0

2ε2

∫ x̃1

G(x̃1) dx̃1

)
.

Any errors in the evaluation of the integral due to the step size �x̃1 are magnified
for very small ε. Thus we use Bode’s rule for equally spaced mesh points, which has
an error term of O((�x̃1)

7).
There are still two questions relating to the PSE which need addressing. Specifically,

how is the disturbance amplitude downstream affected by changing the starting
position of the PSE and by varying the step size? To address this, we define Â(x̃(0)

1 , x̃1)
to be the disturbance amplitude at x̃1, starting the PSE calculation at x̃

(0)
1 , with

the initial condition given by the receptivity result (4.11) and (4.12). Using this, the
existence of a matching region between the receptivity results and the region over
which PSE calculations are possible corresponds to the range of values of x̃

(0)
1 over

which Â is independent of x̃
(0)
1 . Taking ε =0.05 and a step size �x̃1 = 0.05, PSE

calculations cannot be started closer to the leading edge than x̃
(0)
1 = 0.05, for reasons

explained earlier. Thus in figure 10 we plot the amplitude at x̃1 = 0.5 as a function of
starting position, but normalized by the value when x̃

(0)
1 = 0.05:

Ã
(
x̃

(0)
1

)
=

Â
(
x̃

(0)
1 , 0.5)

Â(0.05, 0.5
) .

The position x̃1 = 0.5 is chosen as the point of comparison of the amplitudes because
it is far enough from the turning point in Re(G), that the change in growth rate is
much smoother (see figure 7a), thus not affecting any interpolation of the final point
in the growth rate, which may introduce a small error. Taking larger values of x̃1 at
which to calculate the amplitude does not affect the results. For a PSE step size of
�x̃1 = 0.05, it is seen that for 0.05 < x̃1 < 0.1 there is a 26% change in amplitude. This
reinforces the earlier conclusion that a well-defined matching region exists, at least
for sufficiently small ε. It is also apparent that changing the step size makes only a
small change in the amplitude. Comparisons over a wider range of step sizes is not
possible due to the appearence of transients as noted earlier.

Before we go on to compare these solutions with full-scale numerics, we consider
the comparison between growth rates obtained from PSE results and asymptotic
Orr–Sommerfeld results downstream of the leading edge. In figure 11, we compare G

for ε = 0.1 calculated via the PSE and the asymptotic Orr–Sommerfeld calculations,
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Figure 11. (a) The real part and (b) the imaginary part of G as a function of downstream
distance comparing the PSE result with that of the asymptotic Orr–Sommerfeld theory up to
both O(ε3) and O(ε3 ln ε) for ε = 0.1. Note Rx = U∞x∗/ν = U ′2

0 x̃1/(2ε8).

up to and beyond the lower-branch neutral stability point, which for this value of ε

occurs at x̃1 = 3.946. We show the asymptotic Orr–Sommerfeld solution calculated up
to and including both O(ε3 ln ε) and O(ε3) terms, to show the significant difference
when the O(ε3) term is added. We have very good agreement between the PSE and
the O(ε3) asymptotics up to the neutral stability point, but beyond this point the
results differ. However after the neutral stability point we have much better agreement
between the PSE and O(ε3 ln ε) asymptotics. Thus it appears that the O(ε3) term
becomes non-uniform with distance downstream.

The exact form of the O(ε3) correction term is not considered here, but it contains
complicated integrals, the limits of which depend on κ (Goldstein 1982). The equation
for Ax̃1

/A, which enters at order ε3, contains terms proportional to κ , which on
inserting expansion (3.6) for κ(ε) leads to a solution in the form of an asymptotic
expansion in powers of ε. To consider a true asymptotic expansion, we require just the
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leading-order term of A(x̃1)/A, and hence use κ0 in place of κ in the original equation.
However similar calculations using κ up to and including O(ε3 ln ε) terms, and a full
numerical value of κ were considerably different from the results shown here, whereas
the difference should only have been O(ε). This is due to shifting the contour in the
complex plane over which integrals involving Airy functions are evaluated. The Airy
functions oscillate rapidly, and decay, when their argument is between −π/3 and π/3,
but away from the real axis, so a slight shift in the contour has a significant effect
on the value of the integrals. Further analysis of the O(ε3) term is of considerable
interest but will not be done here.

In summary, the results presented in this section show that this PSE method can
be used to march the Tollmien–Schlichting wave disturbance downstream from the
receptivity region to the neutral stability point, where we can calculate its amplitude
in order to compare with other studies.

6. Comparison with previous numerical studies
In this paper we have described a method for obtaining the amplitude of the

unstable component of the boundary layer disturbance at the lower-branch neutral
stability point and downstream of it in order to investigate the effect of free-stream
forcing on transition. Attention is restricted to cases where the ‘seeding’ of unsteady
disturbances in the boundary layer (known as receptivity) occurs in the region close
to the leading edge. The actual form of free-stream forcing, be it due to acoustic wave
or free-stream turbulence, only enters the analysis through a numerical receptivity
coefficient, determined by asymptotic analysis of the leading edge-region. For a
flat plate it is possible to match asymptotic results from the receptivity region
to asymptotic results from Orr–Sommerfeld theory and this was illustrated in § 4.
However the complexity of the Orr–Sommerfeld asymptotics for even a flat plate
makes extension of these results to more general bodies impractical. Instead we
choose to use results from the receptivity analysis as an initial condition for a
numerical solution using the parabolized stability equation. Figure 6 illustrates that
for small ε an overlap region between the receptivity region and the Orr–Sommerfeld
region exists which means that using receptivity results as an initial condition for PSE
codes can be completely justified, though for larger values of ε more care is required.

To calculate the amplitude of the eigensolution at a given point downstream, we
need to be able to integrate over the growth rate from some point in the receptivity
region which we believe to be in the matching region, where the amplitude is known
from (3.4) and the numerically determined value of the receptivity coefficient. This is
straightforward for small values of ε, as we can take the PSE back to this matching
region. However for larger ε, we have to ‘patch’ this region using a curve fitting
technique, because we have to start our PSE calculation downstream of the matching
region. We patch the function in the range x̃α < x̃1 < x̃β , where x̃α is a point in the
receptivity region that we believe to be in the matching region, and x̃β is the closest
point to the leading edge at which we could get the result in the Orr–Sommerfeld
region. We require that the patching function satisfies

G(x̃1) ≈
{

f1(x̃1), x̃1 < x̃α,

f2(x̃1), x̃1 > x̃β,

or better still equality, where the function f1 is the asymptotic receptivity result and
f2 is the PSE result with the first few iterations removed so that we can be sure it
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Figure 12. Growth rates, Re(G1) and Re(G2), for ε = 0.075 (F = 0.18 × 10−6) which requires
very minimal patching, and ε = 0.2 (F = 65 × 10−6) which requires much more patching, plotted
as (a) a function of x̃1 and (b) a function of Rx = U∞x∗/ν =U ′2

0 x̃1/(2ε8). The lower of the two
curves for the ε =0.2 case corresponds to Re(G1).

is on the growth rate curve. We also use the local PSE to extend the PSE results
upstream closer to the leading edge to make patching easier.

We consider two methods to patch the region between x̃α and x̃β . For the first one
we define G1 to be

G1(x̃1) = λ1(x̃1)f̃ 1(x̃1) + λ2(x̃1)f̃ 2(x̃1),

where

λ1 = 1
2
(1 − tanh θ) and λ2 = 1

2
(1 + tanh θ),

and

θ =
5
(
x̃1 − 1

2
(x̃α + x̃β)

)
x̃β − x̃α

.

The function f̃ 1 is taken to be the straight line extension of f1 from x̃α to x̃β , and

f̃ 2 is taken to be the straight line extension of f2 from x̃β to x̃α . For the second, we
define G2 to be

G2(x̃1) =

⎧⎪⎨
⎪⎩

f1(x̃1), x̃1 < x̃α,

Ax̃3
1 + Bx̃2

1 + Cx̃1 + D, x̃α < x̃1 < x̃β,

f2(x̃1), x̃1 > x̃β,

where A, B , C and D are constants chosen so that G2 and its derivative are continuous
at x̃α and x̃β .

The results of the patching on the growth rates, Re(G1) and Re(G2), can be seen
for two values of ε in figure 12. For the case ε = 0.075, only a small amount of
patching was required around x̃1 = 0.1 and both methods gave similar results, leading
to an 8% difference in the T-S wave amplitude at the lower branch. However when
ε = 0.2, we had to patch a much larger region between 0.25 < x̃1 < 1.0, which leads to
the growth rate curve of G1 possibly dropping more rapidly between 0.5 < x̃1 < 1.0
than expected when we compare its shape to the ε = 0.075 curve. This gives a 22%
difference in T-S wave amplitudes at the lower branch, for the two patching methods.
However the G2 curve appears to give a shape similar to the ε = 0.075 curve, and
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Figure 13. Eigensolution amplitude at the lower-branch neutral stability point as (a) a
function of ε and (b) a function of F = ε6.

also gives better agreement with Goldstein’s asymptotics. It is because of this that we
choose to use this patching technique for the remainder of the paper.

Using our chosen method, the amplitude of the T-S wave can be calculated at all
points downstream. Figure 13 shows the amplitude of the T-S wave at the lower-
branch neutral stability point as a function of ε where the free-stream disturbance
is taken to be an acoustic wave propagation parallel to the mean flow. In this case,
the receptivity coefficient in (4.12) is given by Goldstein et al. (1983) as |C1| =0.9662.
Results for very small ε are asymptotically valid due to the well-defined matching
region, while results for larger values of ε involve numerical patching but do allow
comparison with experimental and numerical results.

Haddad & Corke (1998) consider a parabola at zero angle of incidence to a uniform
flow with a small-amplitude acoustic disturbance propagating parallel to the mean
flow. The steady flow around the body is solved numerically and the unsteady dis-
turbance obtained by solving a linear perturbation. Downstream, the unsteady
disturbance consists of a Stokes wave determined by the local forcing at that location,
together with a sum of T-S waves. Upstream of the first neutral stability point, the T-S
waves are small compared with the Stokes wave. The asymptotic form of the Stokes
wave far downstream can be obtained (Hammerton 1999), but instead Haddad &
Corke obtain a numerical approximation to the Stokes solution by solving the
unsteady equation with convective–inertia terms dropped. If we form an asymptotic
solution for the Stokes solution used by Haddad & Corke, in powers of ε =Re−1/6,
we find

ψST = (2ξ )1/2η + O(ε6),

at the outer edge of the boundary layer. However Hammerton (1999) found the same
solution to be

ψST = (2ξ )1/2
(
η + O

(
ξ−1/2

))
+ O(ε6),

where the O(ξ−1/2) correction terms come from the inclusion of the convective–inertia
terms. Having obtained an expression for the Stokes solution, this is subtracted from
the unsteady solution in order to provide an approximation to the magnitude of the
T-S waves, after a filtering process in which any waves of wavelength greater than
2λT S are removed. This process should remove any remaining contribution by the



Asymptotic receptivity analysis and the parabolized stability equation 377

20

15

10

0

–5

5

–10

–15

–20
5  10  15  20  25

uTS

Haddad & Corke

PSE

Rx(×10–4)

(×10–5)

Figure 14. The T-S wave velocity, uT S , as a function of Rx = U∞x∗/ν at the level η = 0.033,
for both Haddad & Corke’s method, and our PSE method, for ε = 0.248 (F =230 × 10−6).

Stokes solution. Haddad & Corke check their method against existing asymptotics on
a flat plate by considering the limit as the nose radius goes to zero, and it is against
these results, that we check our numerical scheme.

Figure 14 shows a plot of the streamwise velocity, uT S , at η = 0.033 as a function of
Rx = U∞x∗/ν, where x∗ is a dimensional distance from the leading edge. The results
of the present paper (solid line) agree well with the results of Haddad & Corke
(dotted line) (cf. figure 13(b) from Haddad & Corke (1998), after the data have
been filtered), downstream of the lower branch point and in particular around the
upper branch of the neutral stability curve. The discrepancy between the two sets of
results around the lower branch point could be due to two factors. The value of ε is
relatively large and hence we are considering points close to the turning point of the
neutral stability curve where all numerical methods are very sensitive (see Schmid &
Henningson 2001, figure 7.30). In addition, any numerical errors associated with the
subtraction of the Stokes wave and the filtering of higher modes in Haddad & Corke
are likely to be most significant at this point since the unstable T-S wave has its
lowest amplitude there. Comparison with experiments is difficult for the flat plate;
however our comparisons with Haddad & Corke’s numerics strongly suggests that
our receptivity/PSE method is valid.

Saric & Rasmussen (1992) conducted experiments on a flat plate with an elliptical
leading edge stuck onto it, but it was noted that the discontinuity in curvature, at
the join, produced another region of receptivity. Saric et al. (1995) eliminated this
problem by using an elliptic leading edge machine drilled onto a flat plate, called a
modified super ellipse (MSE), to eliminate any discontinuity, and further experiments
were carried out by Saric & White (1998). Fuciarelli et al. (1998) and Wanderley &
Corke (2001) both computed their respective numerical calculations for the MSE in
order to compare their results with those of Saric & White. Excellent agreement of
the T-S wave amplitude at the lower branch is found between Wanderley & Corke
and the experiments; however in this paper we are not able to make comparisons
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with these results, due to the significance of non-zero pressure gradients along an
MSE.

As well as producing amplitude results at the lower branch to compare with
experimental measurements, the numerical methods of Corke and co-workers were
used to compare with leading-edge receptivity results. Wanderley & Corke define a
general form of the receptivity coefficient as the ratio of the maximum T-S wave
amplitude at an x-location to the amplitude of the free-stream disturbance, and
denote it by Kx = |(uT S)|/|(u∞)|, where uT S = ∂ψ/∂y is the T-S wave after filtering and
u∞ is the free-stream disturbance. This definition of the receptivity coefficient depends
on downstream distance and has a very different meaning to the receptivity coefficient
defined in asymptotic analysis.

By considering results close to the neutral stability point, Corke and co-workers
assumed that the first T-S wave dominates the solution, and extrapolate the amplitude
of this wave back to the leading edge in order to compare their numerical results
with the receptivity results of Goldstein (1983) and Hammerton & Kerschen (1996).
For the MSE, Wanderley & Corke considered the disturbance amplitude in a region
just upstream of the lower-branch neutral stability point, believing that in this
region the first T-S mode dominates. We are able to investigate this assumption in
figure 15, which shows the log of the amplitudes (ln(ψ) =

∫
Re(G) dxR) of the first

five eigenfunctions calculated using Goldstein’s asymptotic method as a function of
the streamwise Reynolds number, Rx , where the neutral stability point occurs at
Rx ≈ 3.1 × 105. The corresponding Reynolds number based on the boundary layer
thickness can be calculated using Rδ = 1.72R1/2

x , and in this variable the neutral
stability point occurs at Rδ = 958. In the region 2 × 105 < Rx < 3 × 105 (769 < Rδ < 942)
considered by Wanderley & Corke it does not appear that the first T-S mode domi-
nates the third, fourth and fifth T-S modes, although it does dominate the second.
However Goldstein et al. (1983) showed that for a flat plate the receptivity coefficients
multiplying the third, fourth and fifth T-S modes, are at least five times smaller
than the coefficient multiplying first T-S mode. Hence if similar results hold for the
rounded leading-edge geometry considered, then the assumption that the first T-S
mode dominates all other T-S modes may indeed be valid.

Wanderley & Corke then assume that this T-S mode has constant decay rate at
all locations back to the leading edge and an amplitude of the unsteady disturbance
is found at the leading edge, though the physical interpretation of such a quantity is
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PSE calculations for ε = 0.194 (F = 54.0 × 10−6).

unclear. This extrapolation is marked as the dotted line in figure 16 (cf. figure 10 of
Wanderley & Corke 2001) for ε = 0.194 (F = 54.0×10−6). However this analysis does
have some possible flaws. The most important of these is the assumption of constant
decay rate between the leading edge and the lower-branch neutral stability point. If
the extrapolation were performed on results closer to the neutral stability point the
measured decay rate would be much less and the value of Kx extrapolated to the
leading edge would be much smaller. Results of this analysis for a flat plate are not
available, but in figure 16 the results of the present paper for a flat plate are compared
with the numerical results of Wanderley & Corke for an MSE. This shows that for a
flat plate the assumption of constant growth rate is not valid in this case. It is possible
that the points calculated by Wanderley & Corke in figure 16 could be solely that
of the first T-S mode, for the reasons discussed earlier. However a better comparison
between leading-edge receptivity analysis and the numerical analysis of Wanderley &
Corke would be possible if T-S amplitudes slightly downstream of the lower-branch
neutral stability point were available, since then there would be no question that the
unstable T-S mode dominated the solution as seen in figure 14. Using results from
PSE calculations for the particular geometry would then allow the extrapolation of
the T-S amplitude to positions closer to the leading-edge. This would then allow
comparison with the receptivity coefficients used in asymptotic investigations which
have more physical relevance in this leading-edge region than the KLE calculated by
Wanderley & Corke.

7. Conclusions
To conclude, the method presented in this paper has demonstrated that for a flat

plate we can accurately calculate T-S mode amplitudes at the lower-branch neutral
stability point for sufficiently small ε (large Re) where a well-defined matching region
is apparent. We also demonstrated that for larger ε we can patch the data from
the PSE to that of the leading-edge asymptotics and produce T-S wave calculations
which agree well with numerical data. Adjoint methods (Hill 1995) have recently
been extended to look at the receptivity problem (Giannetti 2002), and this is a
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future area of comparison. The present PSE method can be readily extended to more
general geometries. Using this method for the modified super ellipse would allow us
to investigate the importance of leading-edge curvature on T-S wave amplitudes and
allow better comparison with the numerical results obtained by Wanderley & Corke
as well as experimental data. In addition, quantitative comparison between results
of asymptotic receptivity analysis for different free-stream disturbances and existing
experiments will be possible. This is work currently in progress.

The authors would like to thank the referees for their interesting and useful
comments on this paper.
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